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This study numerically investigated quasi-phase matching condition for Second Harmonic Generation (SGH) in a novel five-
fold symmetric Photonic Quasi Crystal fiber (PQF). The optical properties required for the phase matching condition is 
realized by modifying the air hole size and lattice pitch for the proposed PQF. In this study we have targeted on wavelength 
mismatch factor, overlap integral of the fundamental and the second order mode and coherence length. Due to strong 
guidance of the Quasi-lattice structure, we have numerically studied the visible wavelength generation with a relative 
efficiency of 56.57 % W

-1 
cm

-2 
for the proposed fiber. 
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1. Introduction 

 
One of the most typical quadratic nonlinear optical 

processes is second harmonic generation (SHG). 

Improving the conversion efficiency and acceptance 

bandwidth in SHG has attracted considerable attention in 

recent years. Nonlinear bulk materials conventionally used 

for frequency doubling optical radiation are quite 

expensive and difficult to handle, despite of converting the 

input frequency into the second harmonic with an 

efficiency of about 50–60%. Second harmonic generation 

was realized in a one-dimensional photonic crystal with a 

conversion efficiency hardly reaching about 1% - 4% [1]. 

Second harmonic generation in isotropic media is difficult 

to achieve due to the centro-symmetric nature. In spite of 

the centrosymmetric nature of silica glass material, which 

generally can exhibit only odd-order nonlinearities. It’s 

interesting to observe the intense optical radiation[4] can 

bring about a DC electric field induced third order 

susceptibility originating Second order nonlinearity (
(2)

) 

in those isotropic medium like silicate glass waveguides 

[2] [3] [5]. In recent times, there has been keen interest 

towards SHG employing optical fibers due to size, 

flexibility and ease of fabrication. Poling of silica requires 

the insertion of metal electrode wires by making holes in 

the fiber [3]. An interesting phenomenon during SHG is 

that the fundamental spectrum can be significantly 

affected. This fundamental modulation is a Kerr-like effect 

and can be explained through cascaded quadratic non- 

linearities[6]. The power dependence of the refractive 

index is responsible for the Kerr-effect. Depending upon 

the type of input signal, the Kerr-nonlinearity manifests 

itself in three different effects such as Self-Phase 

Modulation (SPM), Cross-Phase Modulation (CPM) and 

Four-Wave Mixing (FWM) [5]. 

Efficient SHG requires the relative phase mismatch 

between fundamental and second harmonic fields, in order 

to improve phase matching (PM) condition, a number of 

quasi-phase-matching (QPM) techniques have been 

developed. We note that the QPM method has been 

employed in photonic crystals as well as photonic quasi-

crystals, relying either on periodic modulation of the 

generating field strength by periodic static electric field or 

QPM induced using two counter propagating pulses 

[7][11].  

By tailoring the optical properties like, the group 

velocity mismatch, the efficiency of SHG can be improved 

to a drastic level. PCF is a suitable candidate for SGH, 

since the waveguiding properties could easily be 

engineered by varying the geometrical parameters, 

namely, pitch and diameter of the air-holes. Recently 

Photonic quasi crystal fibers(PQF) have been investigated 

for various  distinct waveguiding properties like very less 

confinement loss [8], a flat [8] and large dispersion [9], a 

high nonlinearity [10] and a larger cutoff ratio. These 

properties are harnessed due to the shattered periodicity in 

the air hole arrangement in PQF cladding. Special types of 

PQF’s and hybrid cladding structures are made possible by 

any one of the following methods such as sol–gel, stack-

draw, molding technique, extrusion technique, drilling and 

drawing method,[12-15] etc. The proposed hybrid PQF 

can be fabricated using sol-gel method, since sol-gel 

naturally gives well-arranged air holes. As a casting 

method, the sol-gel technique can fabricate any structure, 

which can be integrated into a mold. The hole size, shape 

and spacing may all be adjusted individually. 

 

 

2. Proposed five fold symmetric PQF 
 

We have illustrated the transverse cross section of 5-

fold PQF in Fig. 1. Quasi-crystals are crystals in which 

they have long-range translational and orientational orders 

[17][36]. However, the translational order is not periodic 
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and the structure does not necessarily have 

crystallographic rotational point symmetry. These 

structures reveal more significant attributes than the 

stereotyped PCFs, due to the degree of freedom that has 

been concealed in aperiodic structures. The proposed PQF 

structure is formed by two types of rhombic tiles, thin tile 

with angles of (/5) & (4/5), and thick tile with angles of 

(2/5) & (3/5). The resulting connected space-filling 

packing of unit cells is called Penrose lattice [31]. The 

inner core and the surrounding air holes are constructed on 

the base of 2-dimenstional Penrose lattice. In our analysis 

the refractive index of fused silica as a function  is 

approximated using three term sellmeier equation 

[16][38].  
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Where,  is the wavelength, n the refractive index as a 

function of , ai  the oscillator strength, and bi is the 

oscillator resonance frequency. In an index-guiding PCF, 

the core refractive index is greater than the average index 

of the cladding, since the air holes are interweaved in the 

silica matrix, and the fiber can guide the light by total 

internal reflection as a standard single mode fiber does. 

That is, the guided light has an effective index neff that 

satisfies the condition ncore > neff  = (/k0).  As per the 

theoretical aspects discussed the proposed PQF 

geometrical layout is formed by thick and thin rhombic 

units. Here the hole diameter is represented as ‘d’ and the 

distance between the center of two adjacent air holes, 

known as pitch or lattice constant, is represented by . In 

order to optimize the structure, we have designated the 

lattice constant to be varied between 1 – 19 m. In order to 

maintain the single mode operation of the PQF, (d/) ratio 

is preserved within 0.1 to 0.5 and the fundamental mode 

and the second harmonic modes are analyzed for different 

pitch parameter [18-20].  

 

     
 

Fig. 1. The geometrical structure of the proposed five-fold 

symmetric Photonic Quasi crystal fiber 

 

 

3. SGH - theory 

 

Theoretically it is been investigated that photonic 

crystal fibers have more freedom for generating second 

harmonics with superior efficiency. Since, PQFs have 

even more flexibility in terms exploiting the properties of 

fiber parameters, SGH efficiency can be few orders greater 

than the typically poled optical fibers. Efficient SHG 

requires the relative phase mismatch between fundamental 

and second harmonic fields to be zero, and fiber dispersion 

generally prevents cumulative growth of the interacting 

[21-22]. In general nsh > nf because of normal dispersion in 

the materials, so that the fundamental and second 

harmonic waves travel at different phase velocities.  

Quasi-phase matching (QPM) is the best suited method 

which requires periodic poling [23-27]. Periodic poling 

can be applied to waveguides and a theoretical treatment 

was given by Somekh and Yariv in 1972 using the Fourier 

expansion. In QPM, SHG will be at its maximum when the 

modal propagation constant  = 0. The efficiency of the 

SHG() can be expressed as 

2 2

2 22

2 2

0

( ) 8

2

eff

ovl f f sh

dP l
P l sinc

P A n n c






 

 


  
       

   (2) 

Where P is the input fundamental power, P2  is the 

output second harmonic power, l is the length of the 

interaction medium. Here the efficiency of the SGH 

derives to be maximum when sinc function equals 1, i.e 

period of the fiber exactly compensates for the phase 

mismatch [22][28]. The term deff corresponds to effective 

nonlinear coefficient, deff = (d/) where d is nonlinearity 

factor correlates to susceptibility tensor 
(2)

. In the above 

equation Aovl is the effective overlap area between the 

fundamental and second harmonic modes which can be 

estimated by [29] 

2
* 2

2

1
ovl sh f

ovl

A E E dxdy
I



              (3) 

Where Iovl is the overlap integral and Esh, Ef are 

normalized second harmonic and fundamental transverse 

modes. The efficiency is aggregated for wavelengths that 

satisfy the QPM condition, but the bandwidth (BW) 

narrows down as the efficiency increases as length (l) 

increases since,  2 2sinc l . It is quite obvious to 

optimize the efficiency without forfeit the bandwidth 

requirement. In this study we have spotlighted on 

parameters which influences the efficiency of the SHG.  It 

is noted that the period of the quasi-phase matching has a 

predominant effect on the efficiency of the SGH [30].  

 
4. Studies on factors influencing efficiency of  
    second harmonic generation 
 

The proposed PQF is an index guiding silica fiber 

with a matrix of air holes running through the length of the 

fiber. The lattice has perfect long range periodicity with 

good rotational symmetry. Here, we have investigated the 
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variation of effective index (neff) with pitch () has been 

analyzed for the first order mode () and the second 

harmonics (2) at 1.064 m and 0.532 m respectively. 

We engaged finite element method (FEM) for calculating 

the effective indices of fundamental and second harmonics 

by varying the (d/) ratio. As seen from the Fig. 3(a). 

when the pitch increases the effective index for 

fundamental and second harmonics increases and reaches 

the effective index described by the sellemeier’s equation 

(i.e., nf = 1.449528, nsh = 1.460680). It is observed from 

the Fig. 3 (b), when the pitch is at minimum the effective 

index difference between HE11() and HE11(2) is at the 

maximum, as the (d/) ratio increases the relative index 

differences ceases to minimum.  It is noteworthy form the 

Fig. 3 (a), to indicate HE11(2) moves slowly towards the 

cutoff when pitch reduces to lower value as compared to 

the fundamental mode.  

The effective index difference has a profound effect 

on the wave-vector mismatch. The phase matching occurs 

when a constant phase relationship is maintained between 

the generated frequency and the propagating frequency 

[26]. Due to chromatic dispersion, sometimes the wave 

vector of the second harmonics is greater than the twice of 

fundamental mode, which can be minimized by choosing 

different polarization. Here the wave vector mismatch is 

defined by [28] 

2

4
2 [ ]

sh f

f

k k k n n
 




       (4) 

 Where f is the fundamental wavelength. From the 

eq. 4, we define   =2-21 - 2/G, where  is the phase 

mismatch factor and G is the grating period given by G = 

2/(2-21).   Phase modulation along with group velocity 

mismatch of fundamental and second harmonics can often 

limit the conversion efficiency [37]. Phase modulation of 

the fundamental pulse can arise mainly due to the 

nonlinear index of the propagating medium. When the 

phase mismatch is sufficiently large, then the power flow 

between the fundamental mode and the second harmonics 

will be reversed.  

It is evident from the Fig. 4, as the pitch increases, the 

air hole distance also increases and ultimately the core 

radius also. Since effective index difference is directly 

proportional to k, the wave vector mismatch found to 

decrease as the pitch increases. It can be inferred as when 

pitch increases both the fundamental mode and the second 

harmonic mode group velocities changes and their 

respective effective indices also increases.  From the Fig. 

3(a), it may be noted that the fundamental mode refractive 

index takes a swift change resulting in a lower index 

difference contributing for lower wave-vector mismatch. 

Here the range of d/ ratio analysis is made  from 0.1 to 

0.5 and it is indicative from the Fig. 4 the wave vector 

mismatch is  diminishing as the ratio reduces to 0.1 and 

beyond this the confinement of the fundamental mode is 

difficult to achieve.  From literature the cut off range for 

PCF is estimated to be 0.4 and the range for PQF is 

extending beyond 0.5 from our analysis. 

 

Fig. 3.(a) Change in effective refractive index for  

fundamental mode and second harmonic mode with 

reference to increasing pitch for d/ ranging from 0.1 to  

                                              0.5 

 

 

Fig. 3.(b) Variation of effective index difference between 

fundamental  mode  and   second  harmonic   mode   for  

          various pitch for d/ ranging from 0.1 to 0.5 

 

Inherently, if the fundamental mode propagates at a 

different phase velocity than the harmonic field, after a 

certain propagation distance the fundamental mode will be 

exactly out of phase with the corresponding co-

propagating second harmonic field. At this point, the 

generated second harmonic wave will destructively 

interfere and if the phase mismatch is ∆k = 0, the 

generated harmonic field will be maximum, otherwise the 

strength of the field will oscillate sinusoidally with the 

distance. The periodicity of this oscillation is twice the 

coherence length given by [32]  

c
L

k





        (5) 

where, Lc describes the propagation distance between two 

locations of generated harmonic waves that are exactly out 

of phase. In our analysis the variation of Lc with respect to 

the d/ ratio spreading from 0.1 to 0.5 is shown in the Fig. 

5. The coherence length for 0.5(d/) is numerically 

computed to be at 6.01 m and steadily increases to 23.68 
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m. The magnitude of coherence length achieved for the 

proposed design is much higher than the previously 

reported for the photonic crystal fibers.  

 
Fig. 4. Variation of wave-vector mismatch for various  

pitch with for d/ ranging from 0.1 to 0.5 

 

 
Fig. 5. Coherence length as a function of varying pitch 

 for d/ ranging from 0.1 to 0.5 

 

 

The direction of power flow between the fundamental 

mode and the second harmonic wave depends on the 

relative phase. So, the +/-sign is altered at every coherence 

length by periodic poling, but in silica fibers the 

nonlinearity appears due to the frozen electric field which 

cannot be easily reversed. These can be interpreted by the 

effective nonlinear coefficient deff. To overcome this 

problem, QPM technique employs changing the sign of the 

nonlinear susceptibility 
(2

 at every coherence length, the 

phase of the polarization wave is shifted by , effectively 

rephrasing the interaction and leading to monotonic power 

flow into the second harmonic wave.  The thickness of 

each pair of positive and negative 
(2)

 is defined as the 

quasi-phase matching length lqpm given by 2
qpm c

l L . As 

noted in the Fig. 6 the quasi-phase matching length 

increases as the pitch increases and saturates 

approximately around 46 m - 47 m when the pitch 

reaches 12 m. From the plot, we would confer, as the 

pitch increases the quasi-phase matching length increases 

with a good poling. 

 
Fig. 6. Quasi-phase matching length as a function of  

varying pitch for d/ ranging from 0.1 to 0.5 

 

 

The overlap integral is another predominant factor in 

deciding the efficiency of the second harmonic generation. 

The overlap integral ( * 2 1/21/ [ ]
ovl sh f ovl

I E E dxdy A    ) 

between the fundamental mode and the generated second 

harmonics directly relates to the efficiency of power 

transfer between these modes [33]. For an instance, when 

d increases the equivalent index of the cladding decreases, 

increasing the index contrast between core and cladding, 

which in turn increases the confinement of the mode in 

PQF. Reducing the pitch makes the fundamental and the 

second harmonics to be more confined which reduces the 

mismatch of their effective areas leading to an increase in 

the overlap integral. From Fig. 7, it is evident that as the 

d/ various from 0.3 to 0.5 the overlap area changes 

drastically due to the core area. In our analysis it is clear 

from the Fig. 6 when the d/=0.5 the Aovl is very 

minimum compared to the conventional PCF.  

The Fig. 8 depicts the conclusive relation between the 

wavevector mismatch `(=2-21) to that of overlap area 

(Aovl). As the analysis speculates the wavevector mismatch 

` for d/=0.5 declines as the pitch increases but at the 

same time the overlap area (Aovl) gains an increase.  From 

our analysis its noteworthy to find overlap area is at 

minimum for d//=0.5. 

 

Fig. 7. Change in overlap area for different d/ ratio 

 with respect to increasing pitch 
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Fig. 8. Relative variation between `(doted dash)  

and Aovl (solid line) with respect to pitch 

 

 
Fig. 9. SGH Relative efficiency (dotted) and QPM period  

with varying pitch (solid line) 

 

 

As depicted in Fig. 8 the overlap area plays a vital role 

in the conversion efficiency as well as the phase mismatch 

factor. We can compute SHG in terms of relative 

efficiency (
2( )

R
P l


    which is defined as the ratio 

of absolute SHG efficiency to the product of fundamental 

input power and square of the length of the fiber. As, 

anticipated Fig. 9 clearly proves the efficiency increases as 

the pitch is decreased and the efficiency is maximum when 

it reaches 1 m, since the phase mismatch factor is at its 

minimum. But poling of the fiber at 1 m, impound 

condition which is impossible. In recent past thermal 

poling has been accomplished with core diameter of 6 m 

with the electrode separation of 70 m [34]leading to a 

significant increase of nonlinear optical susceptibility (
(2)

) 

[35][37]  reaching the value of bulk material ~1 pm/V, d33 

= 0.1591 pm/V. As the length of the PQF is considered to 

be 10 cm with d/=0.5, we could achieve a relative 

efficiency of 56.57% W
-1

 cm
-2

. The relative efficiency 

obtained with the proposed PQF is relatively higher than 

the previously reported values [22]. 

 
 
 

5. Conclusion 

 

This research work have proposed a novel five -fold 

symmetric photonic quasi-crystal fiber mainly targeting in 

improving the factors responsible for efficiency of the 

second harmonic generation. We have optimized the 

design in having lowest phase mismatch vector with the 

overlap area between the fundamental mode and the 

second harmonics by the relative distance between the air 

holes and achieving a maximum relative efficiency of 

SGH to 56.57 %W
-1

cm
-2

. Form the above analysis, it is 

clear that overlap area plays a vital role in deciding the 

efficiency, but still if we need to improvise the efficiency 

then the research can be directed towards optimizing the 

d33 component by having multi-component glasses like 

germane-silicate and chalcogenide glasses with high 

nonlinear optical susceptibility can be accomplished 

conjointly with appropriate poling technique.  
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